EUGENOL AS STARTING MATERIAL FOR THE SYNTHESIS

OF 3-ALKYL MUCONIC ACID DIMETHYL ESTERS AND

3-ALKYL ADIPIC ACID DIMETHYL ESTERS

Sergio Pinheiro^{\$}, Claudio C. Lopes^{\$\$}
and Paulo R.R. Costa^{\$*}

§Núcleo de Pesquisas de Produtos Naturais - Universidade Federal do Rio de Janeiro, C.C.S., Bloco H, 21941, Rio de Janeiro, R.J., Brazil

§§ 1 stituto de Química, Departamento de Química Analítica Universidade Federal do Rio de Janeiro

Compounds <u>1b-e</u> prepared from eugenol (<u>1a</u>) were submited to ozononation in methanol at 0°C, giving the 3-alkyl muconic acid dimethyl esters (<u>2b-e</u>). These were reduced to the corresponding 3-alkyl dimethyl esters of adipic acid (<u>3b-e</u>).

As part of a program of study of abundant natural products available in Brazil we turned our attention to the transformation of eugenol (1a) into aliphatic derivatives. Compounds 1b-g were prepared by usual methods from 1a and were submitted to ozonation in methanol.

The products from <u>1b-e</u> were purified by silica gel chromatography and characterized as the 3-alkyl muconic acid dimethyl esters $\underline{2b-e}^3$. In all cases the yield was about 45% and the ${}^1\text{H}$ NMR spectra showed the presence of a mixture of $\Delta^2\text{Z}$, $\Delta^4\text{Z}$ and $\Delta^2\text{E}$, $\Delta^4\text{Z}$ isomers 4 . These mixtures furnished in quantitative yield the corresponding adipates $\underline{3b-e}$ by hydrogenation in EtOAc in the presence of Pd/C.

The derivatives $\underline{1f-g}$ did not yield muconic acid derivatives when submitted to our ozonation condition. For $\underline{1f}$ the main product was the methyl ester of veratric acid (20%) while for $\underline{1g}$ a complex mixture of products was formed.

With the present method it is possible to prepare in \sim 45% yield 3-alkyl muconic acid dimethyl ester and 3-alkyl adipic acid dimethyl ester. These aliphatic compounds can be utilized as interesting intermediates in synthetic works.

ACKNOWLEDGMENTS - Financial support was provided by the Ministry of Planning (FINEP), the National Research Council of Brazil (CNPq) and the Research Council of this University (CEPG).

References and notes

- P.R.R. Costa, C.C. Lopes and A.V. Pinto, Synth. Comm., 13, 691 (1983); P.R.R. Costa and J.A. Rabi, J. Chem. Research(S), 22 (1984); P.R.R. Costa, J.A. Rabi and W.M. Queiroz, J. Chem. Research(S), 20 (1984); E.J. Barreiro, P.R.R. Costa, F.A.S. Coelho and F.M.C. Faria, J. Chem. Research(S), 220 (1985); J. Chem. Research(M), 2301 (1985).
- 2. 1a+1a', $(CH_3)_2SO_4$, NaOH, H_2O (87%); 1a'+1b, H_2 , AcOEt, Pd/C (100%); 1a'+1c, BF_3 . $Et_2O/NaBH_4/THF$, NaOH/ H_2O_2/H_2O , Ac_2O/DMAP (79%); 1a'+1d, $O_2/AcOH$, 2h, NaBH_4/CH_3OH, Ac_2O/DMAP (82%); 1a'+1e BF_3 . $Et_2O/NaBH_4/THF$, Jones, CH_2N_2/Et_2O (70%); 1a'+1f, KOH, CH_3OH/O_3 , HOAc/Zn (80%); 1f+1g, NaBH_4, CH_3OH/Ac_2O , DMAP (96%).
- For example of transformation of vetratrolic systems into the muconic acid systems see: R.B. Woodward, M.P. Cava, W.D. Ollis, A. Hunger, H.U. Daeniker and K. Schenker, <u>Tetrahedron</u>, 19, 247 (1963); Paulo R.R. Costa, Sergio Pinheiro and Claudio C. Lopes, <u>Tetrahedron</u> Lett., 4155 (1985).
- 4. Depending on the experiment purified products containing slight different proportions of geometrical isomers $\Delta^2 Z$, $\Delta^4 Z$ and $\Delta^2 E$, $\Delta^4 Z$ were obtained. This fact permits the interpretation of the H NMR spectra of the mixtures. The hydrogen atoms attached at C_4 and C_5 show identical chemical shifts and multiplicities in both geometrical isomers, while for hydrogen atom at C2 and the methoxyl groups the chemical shifts differ. The same was observed for 2c-e. $2b (\Delta^2 Z, \Delta^4 Z)$ (100 MHz, CDC1₃) & 7.06(1H, dd, J=12.0 2.0Hz, C_4 -H), 5.88(1H,d, J=12.0Hz, C_5 -H), 5.74 (1H, br, С₂-H), 3.70(3H,s, CO₂CH₃), 3.68(3H,s, CO₂CH₃), 2.65(2H, t, J=7.0Hz), 1.60(2H,m), 0.88(3H,t, J=7.0Hz); 2b (Δ^2 E, $\Delta^{4}Z$) (100MHz, CDC1₃) δ 7.06(1H,dd, J=12.0 and 2.0Hz, C_{2} -H), 6.69(1H,m, C_2 -H), 5.88(1H,d, J=12.0Hz, C_5 -H), 3.86(3H,s, CO_2CH_3), 3.84(3H,s, CO_2CH_3), 2.48(2H,t, J=7.0Hz), 1.60(2H, m), 0.88(3H,t, J=7.0Hz).